博客
关于我
afni GLM模型分析激活的脑区 (FMRI Data Analysis at Individual Level)
阅读量:629 次
发布时间:2019-03-14

本文共 249 字,大约阅读时间需要 1 分钟。

FMRI实验的简单描述

实验设计:采用快速事件相关设计,总共包含四种类型的实验刺激

数据参数:实验数据经过标准化处理后,通过3DDeconvolve进行感知Copying

数据下载:请访问AFNI数据下载页面(需提供AFNI环境)

数据分析流程:

  • 个体水平分析:

    • 数据预处理
    • 3DDeconvolve感知Copying
    • 参数估计
  • 组水平分析:

    • 组织分析数据结构型图像
    • 对感兴趣的效应进行t检验和F检验
  • 分析洗牌为两层:个体层面和组层面分析,每个被试均可采用GLM模型进行分析对效应进行检验和模型拟合

    转载地址:http://xvxoz.baihongyu.com/

    你可能感兴趣的文章
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy最大值和最大值索引
    查看>>
    NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
    查看>>
    Numpy矩阵与通用函数
    查看>>
    numpy绘制热力图
    查看>>